<개요>

- Designing Data-Intensive Applications 를 읽고 그 중 분산시스템의 오류처리에 대한 부분 정리

- 언제나 늘 그렇듯이 새로운 개념이라기 보다는 얼마나 체계적으로 잘 정리해서 핵심을 간직하는가에 집중

 

<내용>

1. Faults and Partial Failures

- Single Computer에서 작업을 할 경우 same operation은 same result를 만들어낸다. (deterministic)

- 우리가 수 대의 컴퓨터에서 동작하는 소프트웨어를 개발할 때 (즉, 네트워크로 연결되어 있는 상태)는 이와는 다르다.

- 분산처리 시스템에서는 예측할 수 없니 특정 부분에서 문제가 발생하는 경우가 있는데 이를 partial failure 라고 부른다.

- partial failure의 어려운 점은 non-deterministic이라는 점이다. 여러 노드와 네트워크에 걸쳐서 무언가를 했을때 예상과는 다르게 성공하기도 하고 실패하기도 한다는 점인데 이러한 부분이 분산처리 시스템을 어렵게 만든다.

 

2. Building a Reliable System from Unreliable Components

- unreliable한 구성요소를 가지고 어떻게 하면 reliable한 시스템을 만들수 있을까? 몇 가지 아이디어를 소개한다.

a. error-correcting code를 가지고 어느부분이 오류가 발생했는지 체크하고 정확하게 전송할 수 있다.

b. TCP/IP : IP는 unreliable하다. 사라지거나 늦게 도착하거나 혹은 중복되거나.. 순서보장도 안된다. 여기에 TCP가 Transpory layer의 역할을 상위에서 해줌으로 사라진것은 다시 보내주고, 중복된것은 재거해주며, 발송순서에 맞게 재조립을 해준다.

물론 언제나 한계점은 존재한다. 데이터의 양이나, 혹은 네트워크 자체의 지연현상등은 커버하기 어렵다. 하지만 까다로운 일반적인 문제를 제거하고 나면 훨씬 쉬워지는것도 사실이다.

 

3. Unreliable Networks

- 분산처리에서는 shared-nothing구조를 유지하는 것이 일반적이다. 왜냐하면 다른 machine끼리는 네트워크로 연결이 되며 각자의 disk나 메모리등에는 접근할 수 없기 때문이다.

- 인터넷 환경에서 각 데이터 센터는 멀리 떨어져 있기 때문에 더욱 이러한 구조인데 대부분 비동기처리로 진행이 된다.(asynchronous packet networks)

- 메시지를 보내기는 하지만 언제 도착할지, 도착이 하기는 할지.. 보장할 수가 없다. 

 a. request가 사라질 수 있다.
 b. request가 늦게 도착할 수 있다.
 c. 원격 node가 죽을 수도 있고
 d. 원격 node가 잠깐 멈출수도 있고. (gc)
 e. 원격 node가 request처리를 했지만 response가 사라질수 있다.
 f. 원격 node가 request처리를 하고 reponse를 보냈지만 늦게 도착할수도 있다.
- 종합해 보면 메시지를 보낸쪽에서는 무엇이 문제인지 알수 있는 방법이 없다.

* 이러한 문제를 처리하는 방법이 일반적으로 "Timeout" 이다. 기다리는 것을 포기하는 것이다.

수신 node가 받았는지, 메시지가 사라졌는지는 여전히 알 수 없지만...

 

4. Network Faults in Practice

- 위에서 살펴본것처럼 reliable한 시스템을 만드는 법은 완벽한것은 없다. (왜? 네트워크는 여전히 불안하기 때문에..)

- 결국 소프트웨어에서 이를 처리할 수 있도록 해야한다. (이것을 지속적으로 테스트하도록 만든 프레임워크가 바로 Chaos Monkey)

 

5. Detecting Faults

- Faults를 감지해야 이후의 처리를 할수 있으니 감지하는 법을 살펴보자.

- 불확실성을 통해서 작동여부를 판단하는 것은 어려우니, 거꾸로 특정상황에서 작동하지 않는다는 것을 명시적으로 알려주는 FeedBack !

 a. 대상 포트에서 수신 프로세스가 없는 경우 OS에서 RST 또는 FIN을 전송한다.

 b. 노드 프로세스가 죽었지만 OS가 여전히 실행중이면 script로 다른 노드에 알릴 수 있다. (e.g Hbase)

 c. 데이터 센터에서 NIC 관리 기능을 사용중이면 하드웨어 수준으로 감지 할 수 있다.

 d. 라우터가 해당 IP에 연결할 수 없다고 확신하면 ICMP destination unreachable 패킷으로 응답할 수 있다. 

 

- 이렇게 빠르게 feedback처리를 하면 매우 유용함을 알 수 있다. 하지만 이것도 역시 신뢰할 수는 없다! (네트워크이니까)

- 결국 request가 성공적으로 처리되었는지는 application레벨에서의 positive response를 받는 것이 필요하다.

 

 

<개요>

- 최근 S3를 File,정적데이터 제공등의 목적으로 사용중인데 max-age 헤더에 대한 내용이 궁금하여 상세한 내용을 파악해 보았다. (HTTP 완벽 가이드 중 일부 내용 정리)

- HTTP 프로토콜은 통신의 많은 부분을 차지하고 있으며 OSI 7 Layer상 최상단에 위치한다.

 

- 즉, 해당 계층을 잘 활용하면 실제 사용자에게 전달되는 데이터를 컨트롤 할 수 있으며

 특히 캐시를 잘 활용하면 응답시간을 상당히 개선할 수 있다.

(다만 브라우저나 클라이언트등에서 일으키는 강제 Refresh에 대해서도 고려할 필요가 있다.)

 

<내용>

1. Cache-Control 헤어

- 클라이언트는 Cache-Control 요청헤더를 사용하여 만료제약을 조정할 수 있다.

Cache-Control: max-stale
Cache-Control: max-stale=<s>
캐시는 신선하지 않은 문서라도 자유롭게 제공할 수 있다.
<s>가 지정되면, 클라이언트는 만료시간이 <s>만큼 지난 문서도 받아들인다.
완화
Cache-Control: min-fresh=<s> 클라이언트는 지금으로부터 적어도 <s>초 후까지 신선한 문서만을 받아들인다. 엄격
Cache-Control: max-age=<s> 캐시는 <s>초보다 오랫동안 캐시된 문서를 반환할 수 없다.
나이가 유효기간을 넘어서게 되는 max-stale지시어가 함께 설정되지 않는 이상 더엄격하게 만든다.
엄격
Cache-Control: no-cache-Pragma:no-cache 이 클라이언트는 캐시된 리소스는 재검사하기 전에는 받아들이지 않을 것이다. 엄격
Cache-Control: no-store 이 캐시는 저장소에서 문서의 흔적을 최대한 빨리 삭제해야 한다.
그 문서에는 민감한 정보가 포함되어 있기 때문이다.
엄격
Cache-Control: only-if-cached 클라이언트는 캐시에 들어있는 사본만을 원한다.  

* 이는 완벽한 시스템이 아니다.

* 유효기간을 먼 미래로 설정한다면, 어떤 변경도 캐시에 반영되지 않을 것이다. 

* 유효기간을 사용조차 하지 않아서 문서가 얼마나 오래 신선할 것인지 캐시가 알기 어려운 경우도 많다.

* 이는 DNS와 같은 많은 인터넷 프로토콜에서 사용되는 "ttl"의 기법의 한 형식이다.

다행히 HTTP에는 DNS와 달리 클라이언트가 만료일을 덮어쓰고 강제로 재로딩할 수 있는 메커니즘이 있다.

 

2. 나이와 신선도 계산

- 캐시된 문서가 제공되기에 충분히 신선한지 알려면 두 가지값을 계산할 필요가 있다.

- 바로 캐시된 사본의 나이와 신선도의 수명이다.

- 충분히 신선한가?

 $나이 < $신선도 수명

 

다음 사항이 주 고려사항이다.

- 캐시는 문서응답이 어디에서 왔는지 알 수 없기 때문에 헤더를 통해서 계산해야 한다.

- 신선도 수명은 해당 문서의 나이가 신선도 수명을 넘었다면 제공하기에 충분하지 않다고 판단하는 것으로 문서의 유효기간 뿐만 아니라 영향을 주는 클라이언트의 모든 요청을 고려해야 한다. (e.g 네트워크 지연) 

 

A. 겉보기 나이는 Date헤더에 기반한다.

$겉보기_나이 = max(0, $응답을 받은 시각 - $Date_헤더값)

$문서가_캐시에_도착했을때의_나이 = $겉보기 나이

 

- 모든 컴퓨터가 똑같이 정확한 시간을 갖고 있다면 단순히 현재시간 - 문서를 보낸 시간으로 계산할 수 있다.

- 하지만 모든 시계는 동기화되지 않으며 심지어 오차가 심할 경우에는 음수가 되기도 한다. max(0, )처리가 필요한 이유

- 이러한 문제를 클럭 스큐라고 한다. 

 

B. 점층적 나이

- 그래서 우리는 이에 대한 대응방법으로 프락시나 캐시를 통과할때마다 Age헤더에 상대적인 나이를 누적해서 더하도록 한다.

- 이 방법은 서버간의 시간비교나 종단 시간비교가 필요없기 때문에 유용하다. (내부시계를 사용하여 체류시간 계산)

- 문서가 각 어플리케이션에 머무른시간과 네트워크 사이를 이동한 시간만큼 Age헤더의값을 늘려야 한다.

- 비 HTTP/1.1 장치의 경우 헤더를 고치거나 삭제하기 때문에 유의해야 하며, 따라서 Age 헤더는 상대나이에 대한 모자란 추정값의 상태로 본다.

 

$보정된_겉보기_나이 = max($겉보기_나이, $Age헤더값)

$문서가_캐시에_도착했을때의_나이 = $보정된_겉보기_나이

 

*신선한 컨텐츠를 얻는 것이 목적이기 때문에 max를 이용해서 보수적으로 계산한다.

 

C. 네트워크 지연에 대한 보상

- 트랜잭션은 느려질 수 있다. (캐시의 주된 동기)

- 매우 느린 네트워크, 과부하 서버, 트리팩등의 발생은 문서의 나이 추정에 대한 추가 계산이 필요하다.

- Date헤더는 언제 문서가 원 서버를 떠났는지 나타내주고 ( *프락시/캐시는 절대 이 헤더를 수정해서는 안된다), 캐시로 옮겨가는 중 얼만큼 시간이 걸렸는지 말해주지 않는다.

- 서버 <> 캐시 왕복지연 시간을 계산하는 것은 상대적으로 쉽다. (왜나하면 요청시각과 도착시간을 알고 있으니까)

 

$겉보기_나이 = max(0, $응답을 받은 시각 - $Date_헤더값)

$보정된_겉보기_나이 = max($겉보기_나이, $Age헤더값)

$응답_지연_추정값 = ($응답을_받은_시각 - $요청을_보낸_시각)

$문서가_캐시에_도착했을때의_나이 = $보정된_겉보기_나이 + $응답_지연_추정값

 

D. 최종 나이계산

- 이 응답이 캐시에 한번 저장되면, 나이를 더 먹게 된다.

- 그 문서의 현재 나이를 계산하기 위해서 그 문서가 캐시에 얼마나 오랫동안 머물렀는지 알아야 한다.

 

$나이 = $문서가_캐시에_도착했을때의_나이 + $사본이_얼마나_오래_우리의_캐시에_있었는지

  캐시된 문서의 나이
서버   요청네트워크지연 서버가 처리하는 시간 응답네트워크지연      
캐시 요청한_시각       응답을_받은_시각 캐시에 체류한 시간 현재_시각
클라이언트             클라이언트가_요청한_시각

 

<정리>

- HTTP에서는 문서의 나이와 신선도를 계산하여 캐시를 제공한다.

- 신선도 수명은 서버와 클라이언트의 제약조건에 의존한다.

- 인터넷의 특성상 클럭스큐와 네트워크 지연이 발생하며 문서의 나이를 계산할때 이를 고려한 방법들이 존재한다.

- 다음 글에서는 신선도를 계산하는 알고리즘에 대해서 정리한다.

+ Recent posts